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ABSTRACT 

We show for the standard actions of higher rank sernisimple Lie groups and 

their discrete subgroups on compact manifolds that the entropy is invaxiant 

under small perturbations. 

1. In t roduc t ion  and the  s t a t emen t  of  results  

Let G be a semisimple Lie group with finite center and all simple factors of real 

rank at least 2, and F c G be a lattice in G. In [Z4] three types of algebraic 

smooth volume preserving actions of F on a compact smooth manifold M have 

been described: (1) Isometric actions; (2) Left translations on compact quotients 

H/A via homomorphism F --, H, where H is a connected Lie group, A c H is 

a co-compact lattice; (3) Afilne actions on compact nilmanifolds. For simplicity 

we call them type 1, type 2 and type 3 actions in this paper, respectively. New 

examples of smooth volume preserving I" actions can be obtained by simple al- 

gebraic constructions such as products, finite extensions, and compact quotients 

from this list. We note that G also acts on H/A by left translations via homo- 

morphism G --* H (we also say that this action is of type 2). We later refer to 

all actions described here as the s t andard  higher rank group actions. 
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As is well-known, for an arbitrary measure preserving diffeomorphism on a 

compact manifold, the Lyapunov exponents (functions defined almost every- 

where) are not continuous functions, and do not change continuously under small 

perturbation of the diffeomorphism. One anticipates rigidity results for higher 

rank group actions. For actions P0 (necessarily of F) preserving a smooth rie- 

mannian metric (and hence of trivial Lyapunov exponents and zero entropy), 

the second author showed in [Z2], among other results, that for any measure 

preserving action p CLclose to P0, the Lyapunov exponents as well as entropy 

are unchanged. We show in this paper that for all standard higher rank group 

actions, the Lyapunov exponents (which are constants) as well as the entropy 

for the individual element are locally rigid (i.e., they are unchanged under small 

perturbations of the actions). 

The local rigidity of the Lyapunov exponents and the entropy holds true for 

a larger class of higher rank group actions called actions with point Ma the r  

spec t rum (Definition 2.4). The standard higher rank group actions, tangen- 

tially flat actions and almost tangentially flat actions (Definition 2.4) are actions 

with point Mather spectrum, and they preserve absolutely continuous measures 

equivalent to some Lebesgue measure. 

THEOREM A: Let G and F be as in (A1), (A3) ofw and P0 a Cl-action of G (or 

F) on a smooth compact manifold M with point Mather spectrum, preserving 

Lebesgue measure. Let p be a C 1 action sufliciently Cl-close to Po and m a 

p-invariant probability measure. Then the set of Lyapunov exponents of p(g) is 

the same as that of po(g) for all g E G (or g E F) (Theorems 3.2, 3.3). 

One corollary of Theorem A is the rigidity of the measure-theoretic entropy 

for the individual elements in the group. 

THEOREM B: Let G, F and m be as in Theorem A, and let p be a C 1+c action 

sufficiently Cl-close to a C 1+~ volume preserving action Po (e > O) with point 

Mather spectrum. If  in addition m is absolutely continuous with respect to 

Lebesgue measure, then the measure-theoretic entropy hm(p(g) ) = h(po(g) ) for 

all g E G (or g E F). Here h(po(g)) is both the topological entropy and the 

measure-theoretic entropy (with respect to the invariant volume form) for Po(g) 

(Theorem 3.4 (2)). 

Theorem B strengthens a result in [Z3] that such entropy for individual ele- 

ments has only finite many possibilities (9.4.13, 9.4.16 of [Z3]). This also par- 
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tially answers a question raised in a lecture by Fttrstenberg [Fu] concerning the 

continuity of measure-theoretic entropies for individual elements in higher rank 

group actions preserving Lebesgue measures. We point out that it is not known 

whether the perturbations of the standard actions have point Mather spectrum. 

ACKNOWLEDGEMENT: The first author is grateful to the University of Chicago 

and the University of North Carolina at Chapel Hill for their hospitality and 

financial support, and would like to thank P. Eberlein for helpful discussions. 

2. Lyapunov exponents and Mather spectrum 

Let M be a compact manifold and f :  M ~ M be a C 1 diffeomorphism. For every 

x E M and v E TMx - {0}, we define X+(x, v, f )  = limsup~_o~ ~-In [[Df~(x)vl[ 

1 In [IDfn(x)v[[. and X - ( x , v ,  f )  = limsup~__._~ 

LEMMA 2.1: Suppose that either 

(1) f is an analytic diffeomorphism such that f n  r id, or 

(2) there exists a dense set D c M with the following property: for all x E D, 

there exists v E T M z  - {0} such that X + ( x , v , f )  r 0 or X - ( x , v , f )  r O. 

Then the set of nonperiodic points is dense in M.  

Proof'. Let Pn denote the set of points x E M such that f n (x )  = x. Since P~ 

is a closed set, by Baire Category Theorem it is enough to show that  P,~ has no 

interior points (since U~ P,~ is of first category). Suppose the contrary: let U be 

a nonempty open set such that  U C Pn, and hence fn tu  = id[u. In case (1), 

this implies that f~ = id, contrary to the assumption of f in (1). In case (2), 

since D is dense in M, there exists P0 E Pn M D. Since f n l v  = Idv, we have 

D f ~  o = Id: Tpo --* Tpo. This implies that  X+(po,v,])  = 0 and X-(po, v , f )  = 0 

for P0 E D, all v �9 TMpo - {0}, contrary to the assumption in (2). I 

We remark that all standard actions P.0 are analytic. Therefore for any g �9 G 

or F satisfying po(g '~) r Id for any n E Z +, non-periodic points of Po(g) are dense 

in M. 

For a C 1 diffeomorphism f:  M --* M on a compact smooth manifold with rie- 

mannian metric d given by inner product < .,. >, we may define an operator f .  on 

the space Vec~ of C O vector fields by the formula f . v ( x )  = ( D f ) ( v ( f - l ( x ) ) ) .  

According to Mather ([Mat], see also [Pel]), the operator L obtained by complex- 

ification of f .  possesses a spectrum consisting of all the points between full circles, 
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provided that the non-periodic points of f are dense in M. Each of the connected 

components of the spectrum is thus a [hi,/~i]-ring (a closed annulus about the 

origin with radii hi and #i, hi _< #i), and corresponding to each [hi, #~]-ring 

there is a continuous f-invariant subbundle Ei in T M  such that for every/f > 0, 

there exists qi,q~ > 0, such that qi(A~ - ~f)~l[v~[I _< HDf'~viH <_ q~(pi + ~f)nHv~[[ 

for all vi E Ei (x ) ,x  e M , n  > 0 ([Pel], [BP]). Therefore, it is easy to see that  

In A~ < X • (x, v~, f )  < In #i. 

We summarize the facts in the following theorem. 

THEOREM 2.2 ([Pel]): Let f E Di f f l (M) and assume that the non-periodic 

points of  f are dense in M.  Then there exist a set of  rings Rx , . . . ,  Rk (where 

each Ri is the [hi, #/]-ring), corresponding to each ring Ri an f -invariant tangent 

subbundle Ei, such that 

(1) Ei is a continuous vector bundle; 

(2) For every 6 > 0, there exists qi, q~ > 0, qi(Ai - ~)~llv~ll _< IlOfnv~ll <- 

qI(~ + ~)~llvdl and q~(m + ~)-~llv~ll __- IlOY-~v~ll <- qI(A~ - ~)-~llvdl for 
a11vi E E~(x),x E M , n  > O; 

(3) In A~ < X + (x, vi, f )  < In #~. | 

Let f have dense non-periodic points and k, hi(f)  = hi, #i(f)  = #i, Ei( f )  = Ei 

be as in Theorem 2.2; let / i ( f )  = [Ai(f),#i(f)],  i = 1 , . . . , k .  We define the 

M a t h e r  s p e c t r u m  of f to be the set of pairs { (I1 (f) ,  E1 (f)),  �9 �9 (Ik (f) ,  Ek (f))  } 

and denote it by Spectm(f ). The following result of Pesin asserts that the Mather 

spectrum has a certain continuity property. 

THEOREM 2.3 ([Pel]): Let Spectm(f) consist of  at least two pairs. Then for 

every e > 0 there exists a neighborhood 0 o f f  in Diffl(M) such that, for any 

g E ~ ,  

Spectra(g) - -  {(I1,1(g), E l , l (g ) ) , . . . ,  (11#1 (g), E1,Q (g) ), 

( I k , l  ( g ) ,  E k , l  ( g )  ) ,  . . . , ( Ik,i~ (g), Ek,i~ (g)) }, 

where for each j and I = 1 , . . . , i j ,  Ij,L(g) = [Aj,t(g), tzj,t(g)] and Aj,1 <_ ]Aj,1 < 

Aj,2 _< Pj,2 < "'" < Aj,ij <_ I~j,ij, with the following properties: 

(1) I A j ( f ) -  AjA(g)[ _< e, [# j ( f ) - /~ j , i j  (g)[ <__ e f o r j  = 1 , . . . , k ;  
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(2) Let d be the metric measuring the distance between subbundles induced 

by riemannian metric. Then d(EJ(f), ~)~=1 Ej,,(g)) <_ e. | 

We remark that for C 1 diffeomorphisms f whose non-periodic points are not 

necessarily dense, we also define the Mather spectrum of f provided that f 

preserves a continuous riemannian metric or has subexponential growth with 

respect to a riemannian metric for the tangent map (i.e., for every 6 > 0, there 

exists q,q' > 0, q(1 - ~)nllvl[ < [[Dpv[] < q'(1 + ~)nIlv[[ and qi(1 + ~)-nllvl[ _< 

IIDf-"vlt <_ q ' (1  - 6 ) - " l l v l l  for  all v E TMx,x  E M,n  > 0), by simply letting 

Spectra(I) = ([1,1], TM). It is clear that for such f ,  X+(x,v, f)  = 0 for all 

x E M and v E TMx, and for any diffeomorphism h Cl-close to f ,  X+(x,v,h) is 

close to 0 uniformly in x E and v E TM~. 

Definition 2.4: (a) Let f EDiffl(M) either have dense non-periodic points in 

M or have subexponential growth with respect to a riemannian metric for the 

tangent map. 

(1) f has po in t  M a t h e r  s p e c t r u m  if hi = #i for all i = 1 , . . . ,  k. 

(2) f is t angen t i a l l y  flat  if there exists a continuous framing a (i.e., a set of 

n-continuous non-vanishing vector fields {X1, . . . ,  X,}  on M) such that  

D f  o a(x) = a( f (z ) )A for a constant matrix A. 

(b) Let p be a Cl-action p of G (or F) on M. 

(1) p has poin t  M a t h e r  s p e c t r u m  if, for each g E G (or g E F), p(g) has 

point Mather spectrum; in particular, p(g) either has dense non-periodic 

points or has subexponential growth with respect to some riemannian 

metric. 

(2) p is t angen t i a l l y  flat  associated with a homomorphism 7r: G ~ GL(n, R) 

if there exists a continuous framing a such that Dp(g)o a(x) = 

a(p(g)(x))r(g) for all g E G. 

(3) p is a lmos t  t angen t i a l l y  flat  if there is a compact Lie group C, and a 

principal C-bundle E over M on which G (or F) acts by principal bundle 

automorphisms such that the induced action on M is the original action 

p, and the action on E is tangentially flat. 

We remark that f has point Mather spectrum if and only if there exist finitely 

many positive numbers ,~1,.-., Ak (k _> 1) such that, for each i = 1 , . . . ,  k, there 

is an f-invariant continuous tangent subbundle Ei, such that for every 6 > 0, 
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there exists qi,q~ > 0, such that qi(Ai-6)'~[[vi[[ _ [[Df'~vi[[ <_ q~(Ai+6)n[]vi[[ and 

qi(Ai-bth)-n[Ivi][ ~ I[Df-nvi[[ <_ q~(Ai-6)-n[[vil[ for all vi e Ei(x),x e M ,n  > O. 

Therefore if a diffeomorphism f (or an action p) is tangentially flat then it has 

point Mather spectrum. It is also clear that if an action is tangentially flat then 

it is almost tangentially flat. Moreover, we have the following. 

LEMMA 2.5: Let f E Diffl(M) e/ther have dense non-periodic points in M or 

have subexponential growth with respect to a riemannian metric for the tangent 

map. 

(1) If  f has point spectrum, then X+(x, vi, f )  = lnAi and 1-I Adim(E~) = 1 for 

a11 x E M, vi EEi  provided that for each i = 1 , . . . ,  k, Ei is orientable; 

(2) If  f is tangentially fiat, then the matrix A associated to f with respect to 

the linearizing framing is in SL+(n, •) and hence f preserves a continuous 

volume form. 

Vroo~ Let f have point spectrum and Spectra(f) = {(A1, E l ) , . . - ,  (Ak, Ek)) (we 

set Ai = [Ai, Ai]). It is clear that  )~+(x, vi, f )  = In Ai. We also assume that  for 

every 6 > 0, there exists q~,q~ > 0, qi(Ai-  ~f)n[[vi[[ _< [[Df'~vi[[ <_ q~(A + 6)nHvi[[ 

for all vi E Ei (x), x E M, n > 0. We choose a continuous metric on M such that  

Ei are mutually orthogonal, an orthonormal basis on each of Ei and use the dual 

of the basis to construct a top continuous form ai on Ei. Define a continuous 
k volume form a = /~1 ai. Now, using the formula of integration for the change of 

variable y = f(x)  we obtain 

fMda(x)  = f f~Mda(Y) = fM [det(Df~)(x)lda(x)" 

Since l-I(Ai - 6) dim(E') _< [det(Dfn)(x)[ <_ 1-I()~i + 6)dim(E,) we conclude that  
V[ ~dim(Ei) if ~, ' i  r 1 we may change the volume of a compact manifold M by a 

diffeomorphism, which is impossible. 

The second assertion is a direct corollary of the first, since det(A) is the 

determinant of the tangent map Dr. | 

Similar statements can also be made for almost tangentially flat actions, the 

proof of which is left to the reader. 

LEMMA 2.6: Let p be an a/most tangentially fiat action of G or F on M. Then 

p has point Mather spectrum, and preserves an absolutely continuous measure 

equivalent to some Lebesgue measure. 
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Examples 2.7: (1) The standard higher rank group actions of type 1-3 are ac- 

tions with point Mather spectrum. (2) The standard higher rank group actions 

of type 2 and type 3 are tangentially flat actions. (3) Let H be a connected Lie 

group, D be a cocompact lattice of H, and C be a compact subgroup of H. Let 

the action of G or F on CkH/D be given by a homomorphism into H whose 

image is centralized by C. This action is not tangentially flat. However, it is 

almost tangentially flat. 

It is easy to see that the finite products, finite extensions and finite quotients 

obtained from known examples of the actions with point Mather spectrum pre- 

serving absolutely continuous measure also have such properties. Since all actions 

in Examples 2.7 preserve some absolutely continuous measure, we conclude that 

all standard higher rank group actions have point Mather spectrum, and preserve 

some absolutely continuous measure. 

3. Local rigidity of  the Lyapunov exponents  of  actions with point  

Mather  spec trum 

In the rest of the paper, unless otherwise specified, we assume that: 

(A1) G is a finite product I-I Gi where each Gi is the group of ki-points of a 

ki-simple connected ki-group Gi of ki-rank at least 2, where ki is a local field 

of characteristic 0; for ki = R, we allow Gi to be any connected semisimple Lie 

group with finite center and all simple factors of R-rank at least 2; 

(A2) (~i is the algebraic simply connected covering of Gi in the algebraic group 

case, Gi is the ki-points of it; if ki = R and Gi is only a connected Lie group, 

we let (~i be the universal covering Lie group of G~, (~i the maximal algebraic 

factor of Gi (since Gi modulo the center is the (Hausdoff) connected component 

of the real points of an algebraic R-group G~, the algebraic universal cover of G~ 

is (~i); (~ is the finite product 1"[ (~i, (~ is the finite product 1-I (~i; 

(A3) F is a lattice in G; 

(A4) H is an R-algebraic group, H~ is the real points of the Zariski connected 

component H ~ of H; 

(A5) M is an n-dimensional compact smooth manifold, m is a probability 

measure on M; 

(A6) lr0 is a continuous homomorphism of G or r to GL(n, R), ~0 is the lift of 

7r0 to (~; 

(A7) P0 is Cl-action of G or F (depending on the context) on M with point 
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Mather spectrum. 

We now choose a framing on M in the following way. If there exists a tangen- 

tially flat action on M, we let the framing be the continuous framing which gives 

the tangentially flat structure. Otherwise, we let the framing be a measurable 

framing such that the derivative cocycle for a Cl-action is tempered with respect 

to this framing (i.e., for any g E G (or F) and n E Z, [[a(-, pl(gn))[[ E L~176 m)). 

If no mention is made of a framing in a statement, we always assume that the 

framing is the framing we choose above. 

In this section, we prove that the Lyapunov exponents of the Cl-actions with 

point Mather spectrum of G or F on smooth compact manifold M are locally 

rigid. The proof of this fact relies on continuity properties of Mather spectrum 

(Theorem 2.3) and the following corollary of cocycle superrigidity. We state it 

for the convenience of the reader. 

THEOREM 3.1: Let G and F be as in (A1) and (A3). Let p be a C 1 ergodic 

action os G (or F) on (M, m) preserving a probability measure m and a be the 

derivative cocycle. Then there exists an associated quadruple (H, fl, ~r, b) such 

that: 

(1) 
(2) 
(3) 

H is an algebraic R-group and the algebraic hull of a is HR; 

/3 is a cocycle over p taking values in HR and a is equivalent to 8; 

for the action p' on M XHR/H ~ defined by (x, [h], g) ~-* (p(g)x, B(x, g)[h]), 

the algebraic hull of~3' (a cocycle over p' defined by ( (x, [hi), g) ~ ~(x, g) ) 

is H ~ 

(4) let G be as in (A2). Then fl~ is equivalent to a tempered cocycle defined 

by & (x, [h], g) ~ ~r(~)b(x, [h], ~), where ~ is a homomorphism from G to 

H ~ (which factors to a rational homomorphism of the maxima/algebraic 

factor of G) and b(x, [hi, .~) is a measurable map taking values in a compact 

normai subgroup os H ~ (~ projects to g under the covering map); 

(5) a '  (a cocycle over p' defined by (x, [h], g) ~ a(x, g)) is equivalent to 6. 

We make a comment about this theorem. Let H be an algebraic R-group such 

that Ha is the algebraic hull of a. Then H is reductive and the real points 

of the center (Z(I-I))R of H is compact (by Zimmer [Z5] for G and cocompact 

F, and Lewis [Le] for non-cocompact F). In the case that G is the real point 

of a connected almost R-simple R-group of R-rank_> 2, the proof can be found 

in [Z3] (Theorem 9.4.12, together with the result about the algebraic hull of the 
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derivative cocycle mentioned above). In the case that G is a connected semisimple 

Lie group with finite center such that each of the simple components of which 

has R-rank at least 2, the theorem is a corollary of Theorem 2.2 of [Z1] (without 

the assumption of the irreducible ergodicity of the action). In the most general 

case (G and F as in (A1) and (A3)), we also have the cocycle superrigidity result 

for ergodic actions of G as in the Theorem 2.2 of [Zl], and the theorem is its 

corollary. 

Let f be a Cl-diffeomorphism preserving a probability measure m. The 

Oseledec multiplicative ergodic theorem [O] asserts that there exists a 

measurable decomposition of the tangent bundle T M  = E1 ~ . . .  �9 E,,  such 

that (1) for m-almost all x E M, all v E TMx - {0}, lin~_~+~ ~lnilDfn(v)II 

exist (hence they are equal to X• (2) for m-almost all x E M, all 

v E TMx - {0}, X+(x,v, f )  >_ X - ( x , v , l )  and equality holds iff v EEi  for some 

i. Such x E M is said to be a regular point. We remark that if ] is tangen- 

tially fiat, then E l , . . . ,  E8 correspond to different absolute values of eigenvalues. 

For a regular point x E M, we denote by X(x,  ~) the multiset of the Lyapunov 

exponents of f at x including the multiplicity. I.e., 

X ( x , f )  = (X(X, Vl , f ) , . . . ,X(X,  vl, f ! , . . . ,X (X ,  vk, f ) , . : . ,X (x ,  vk, f)fl, 

dim~E1 ) dim(E~ ) 

where vi e E i - (0} .  We also denote by X(A) the multiset (ln(l~lI), . . . ,  ln(]~:nl)}, 

where gi are all the eigenvalues of matrix A including the multiplicity. Two such 

multisets are said to be equal if every number in one multiset appears in the 

other with equal multiplicities. 

THEOREM 3.2: Let G be as in (A1) and Po be a Cl-action with point Mather 

spectrum, preserving a measure mo equivalent to Lebesgue measure. 

(1) For any po-invariant, ergodic components m ol, too2 of too, let the 

quadruples (Hm~ , f3,~, ~m~, b,~) be associated with Po, m~ (i=1,2) as in 

Theorem 3.1. Then X ( ~r.~ (g ) ) = X ( ~.~ (g ) ) (denoted by Xo(a ) ). More- 
over, X(x,  Po(g)) = Xo(g) for all g E G, too-almost every x E M. 

(2) There exists a neighborhood ~ of po in R(G, Diffl(M)) such that for any 

p E 71, any p-invariant probability measure m, any g E G and m-almost 

every x E M, X(x,  p(g)) = Xo(g). 

We recall for any topological group K, R(K, Diffl(M)) is the space of all 

continuous homomorphisms from K to Diff 1 (M) with the open-compact topology 
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(i.e., Pn --* P' iff Pn(g) --' P~(g) in Cl-topology for all g E K and the convergence 

is uniform on compact sets). 

Proof For two real representations ~o and #1 of G on Rn (n = dim(M)), we have 

either (i) X(~0(~)) = X(~l(g)) for all .~ E G or (ii) there exists ~ = ~(ro, r i )  E 

such that X(~0(~)) # X(~I(~)). 

We say t h a t  ~o is equivalent to ~1 if (i) happens, and denote the equivalence 

class containing ~o by [~'0]. Let �9 = {[~o], [~t] . . . .  , [rs]} be the (finite) set of all 

equivalence classes of representations of (~ on R n. Then for each i = 1 , . . . ,  s we 

have gi E G such that X(~o(gi)) # X(~i(~i)). 

(1) For any Cl-action /~ of G on M preserving a probability measure fit, 

g E G and a GL(n,R)-valued cocycle a over p(g), we define e~(a,g)(x) as 
1 ln+(iia(x, ~(gn))]i ) if it exists. If a is the derivative cocycle, then a limn--.~ 

is tempered and hence e(a, ~(g))(x) exists for Th-almost every x E M and hence 

for almost every regular point. Without loss of generality, we assume for every 

regular point the above limit exists. It is well-known that the sum of the first p 

largest Lyapunov exponents of derivative cocycle a at regular points x over/~(g) 

is e~(Ava)(x) (see (3.2) of [Rul]). 

Let (~, p~ and the quadruples (Hm~,/3m~, ~m~, bm~) associated with Po, m~ be 

as in Theorem 3.1. It is obvious that for tool-almost every x E M and all [hi E 

(Hm~)~t/(Hm~)~, epo (AP(~)(x) = eo; (AP~')(x, [h]). Since AP(~ ~ and AP6 are equiv- 

alent (Theorem 3.1 (5)) tempered cocycles, eo; (AVa')(x, [h]) = eo~ (AP~)(x, [hi) 

where 5 is as in Theorem 3.1 (4) (see, for example, 9.4.7 of [Z3]). Since for 

m~-almost all (x,[h]) e i x HR/H ~ eo,o(APS)(x,[h]) --- max{ln(lA[): A is a n  

eigenvalue for AP~(~)}, we obtain that e(APa')(x, [h D = max{ln(I)q): )~ is an 

eigenvalue for A~#(~)}. It follows that X(x,  po(gi)) = X ( ~  (gi)) for m~-almost 

every x E M. The same argument implies that X(x,  Po(g~)) = X(~m~(gi)) for 

mo2-almost every x E M. 

It follows directly from the definition of point Mather spectrum that for each 

g E G, the multiset of Lyapunov exponents X(x,  Po(g)) for Po(g) exists every- 

where and is independent of x. In particular, ~m~ and ~,n~ are equivalent. 

Without loss of generality, we assume that the equivalence class is [~o] for a 

homomorphism to: G -* GL(n, R). 

(2) Without loss of generality we assume that m is ergodic. By Theorem 

2.3, there exists a neighborhood ~ of Po such that for all p ~ 77, and any 

regular point x ~ M, X(x,p(gi)) # X(~i(gi)) for i >_ 1. Let the quadruple 
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(H, ~, ~, b) be associated with p. It follows from the argument as in (1) that 

X(x,p(gi ) )  = X(~(~i)) for the representation #, and therefore, ~ and ~0 are 

in the same equivalence class [~0]. It is then clear that for any p E ~?, any p- 

invariant Borel probability measure m, any g E G and m-almost every x E M, 

X(x ,  p(g)) = X(~o(g)) = Xo(g). m 

For higher rank lattices, we have a similar result. 

THEOREM 3.3: Let F be as in (A3) and Po be a Cl-action with point Mather 

spectrum, preserving a measure mo equivalent to Lebesgue measure. 

(1) For any po-invariant, ergodic component m~, m2o of too, let the quadruples 

(Hm$,~m~,?rm~,bm~) be associated with po, m~ (i=1,2) as in Theorem 

3.1. Then X(~rm~(g)) = X(~rm~(g)) for all g E F (denoted by Xo(g)). 

Moreover, X (x ,  Po(g)) -- Xo(g) for all g E F, mo-almost every x E M. 

(2) There exists a neighborhood ~ of po in R(F, Diffl(M)) such that for any 

p E 71, any p-invariant probability measure m, any g E F and m-almost 

every x E M, X(x ,  p(g)) = Xo(g). 

We have the following interesting corollary that asserts the rigidity of entropy 

for individual elements in the group. 

THEOREM 3.4: Let G and F be as before and Po be a Cr-action of G (or F) on a 

smooth compact manifold M with point Mather spectrum, and preserving some 

Lebesgue measure. Let p be a C ~ action sufficiently Cl-close to Po. Then: 

(1) If  r >_ 1, there exists a p-invariant absolutely continuous measure m; 

(2) I f  r > 1 and m is an absolutely continuous p-invariant measure, then 

hm(p(g)) = h(po(g)) for a11 g E G (or 9 E F). Here h(po(g)) is both the 

topological entropy and the measure-theoretic entropy (with respect to 

the inyariant Lebesgue measure) for Po(g). 

Proof'. (1) Since G, F have property T (III.5.6, III.5.7 of [Mar]) and p is 

sufficiently Cl-close to P0, P preserves an absolutely continuous measure m 

(Lemma 2.6 of [KLZ] for F; a similar argument works for G). We remark that the 

measure is not necessarily equivalent to the measure given by a smooth volume. 

(2) Let m be any absolutely continuous p-invariant measure. Then Pesin's 

formula (proved by Pesin for volume preserving diffeomorphisms [Pe2]; extended 

to diffeomorphisms preserving absolutely continuous measure by others, see, for 
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example, [LS], [Marl]) together with Theorems 3.2, 3.3 assert that for all g E G 

(or F), h,~(p(g)) = ~-]~x,>0 Xi (Xi are from the multiset Xo(g)). 

We show that h(po(g)) := ~-:~x~>0 Xi is both the topological entropy and the 

measure-theoretic entropy (with respect to the invariant Lebesgue measure) for 

Po(g). Indeed, by another application of Pesin's formula we obtain that h(po(g)) 

is the measure-theoretic entropy for Po(g) with respect to the invariant measure. 

By a variational principle (see, for example, Theorem 8.6 and Corollary 8.6.1 of 

[W]), the topological entropy of Po(g) is 

ht,~(po(g)) -- sup{h~(po(g)): ~u is po(g)-invariaut probability measure} 

= sup{h~,(po(g)): p is po(g)-invariant erg0dic probability measure}. 

Therefore we have ht,,p(po(g)) >_ h(po(g)). For any po(g)-invariant ergodic mea- 

sure/~, let X~) , . . . ,  X(n ") (necessarily constants) be the Lyapunov exponents of 
(~) 

Po(g) with respect to ~. Then h~(po(g)) <_ 2.,xl~)>o Xi by Ruelle's inequality 

[Ru2]. Since Po(g) has point Mather spectrum, the multiset {X~"),..., X(d ')} is 

independent of the choice of the po(g)-invariant ergodic probability measure # 

(in fact it is equal to Xo(g)). Hence h~,(po(g)) <_ ~-~x,>o Xi = h(po(g)). It follows 

that hwp(po(g)) <_ h(po(g)). Hence ht,~(po(g)) = h(po(g)). | 
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